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Frictional forces play an important role in rope rescue. Friction force helps control the lowering of rescuers, 
however, friction force fights against the rescuer during a raise. Since friction in rope rescue can change expo-
nentially with the rope geometry and the coefficient of friction, understanding the factors that affect rope fric-
tion is essential in technical rescue. 

By applying a simple friction law derived for a capstan to friction forces in a break tube, rappel rack, and a 
figure-eight, we gain a better understanding of the behavior of these devices. While the conclusions drawn 
from this study are not counter to the current beliefs and practices within the rescue community, this study 
quantifies why some friction devices perform better than others.

In addition, these same friction laws can be used to better understand the frictional force for a rope going 
over a rock face. For example, the interaction of static and dynamic coefficients of friction can explain the 
bouncy ride that rescuers sometimes feel when they are at the end of a long haul system. Rope dynamics gener-
ated by friction can be estimated given the amount of rope, the weight of the load, the rope modulus, and the 
frictional force. 
Friction Law

Tangential forces generated between contacting 
surfaces are known as frictional forces. These tangen-
tial forces resist motion up to a point. Experiments 
have shown how the limiting tangential force that can 
resist motion is proportional to the normal force along 
the contact surface. Thus, for impending motion the 
frictional force,  is proportional to the normal force, 

(1)

where  is called the coefficient of friction.

Once the maximum frictional force is exceeded, 
then sliding will occur. There will still be resistance to 
slippage, and the magnitude of the tangential force for 
a sliding surface will also be proportional to the nor-
mal force. However, the frictional force for sliding 
contact will be lower. 
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The ratio of the limiting frictional force to the 
normal force for no slipping is called the static coef-
ficient of friction. For sliding surfaces is term 
dynamic coefficient of friction is used. The transi-
tion between static an sliding coefficient of friction 
is shown in Figure 1. 

Automobile drivers know when the tires are slid-
ing, a car will have less breaking power than if the 
tires are not locked. Anti-lock breaks take advantage 
of the fact that sliding friction is less than static fric-
tion.

Figure 1: Friction Law.



Figure 2 shows a friction example for a brick that 
must be slid across a floor. We all know from real life 
experience that even though the two different block 
orientations will have a much different contact areas, 
the amount of force required to start the block sliding 
will be the same for both orientations. If the forces 
were different, then construction workers would 
always try to stack material so that they would be easy 
to slide.

The force required to slide the blocks depends 
only on the weight of the block and the coefficient of 
friction between the block and the sliding surface. In 
order to see how the contact area cancels from the fric-
tion equation, consider the normal stress defined as:

 σQ= FQ/A (2)

The friction stress will be µσQ�and the frictional force 
will be FI = µσQ A to give:

 (3)

When the frictional forces are computed using the 
assumption that the limiting tangential stress is pro-
portional to the normal stress, the areas council to give 
the ratio of the tangent force to the normal force inde-
pendent of the contact area.

To a good first approximation, the independence 
of the friction law to contact area also applies to ropes. 
If the load is extreme, then the above equations may 
not be accurate. However, the friction law presented 
here should provide a very good approximation for 
most loads.

The Capstan Friction Equation

In Figure 3, the differential forces for tension of a 
rope over a drum are shown assuming impending slip-
ping and no bending strength. Figure 4 shows the fin-

Figure 2: Friction Example.
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ial equation which is known as the capstan friction 
equation. Note that in order to understand the rest of 
this paper, the reader need not understand the deriva-
tion of these equations. The derivation is presented for 
completeness and can be found in J. L. Meriman. 

As a rope bends over a small segment of a drum, 
the tension in a rope will increase from T to T+dT in 
an angle dθ. The normal force is the differential dN, 
since it acts on a differential of area. The frictional 
force is µdN, and acts to oppose slippage. 

Equilibrium in the x direction requires the sum of 
forces in the x direction equal to be zero, 

(4)

(5)

which reduces to

 µdN = dT (6)

if one recalls that cosine of a differential is unity and 
the product of two differentials can be neglected. 
Equilibrium in the y direction, similarly, gives

, (7)

which reduces to

 dN = Tdθ. (8)

 The normal force can be eliminated from equation 
6 and 8 to give a differential equation for T in terms of 
the contact angle θ. 

.

 Integration over the total contact angle gives the ratio 
of the tension force in terms of the coefficient of fric-
tion, µ, and the contact angle β.

(9)

or after integration of equation 9 we get, 
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which reduces to the capstan equation:

. (11)

Figure 4 summarizes the capstan equation for fric-
tion over a drum. Using this simple friction law leads 
us to conclude that the frictional forces for a rope 
depends only on three things:
• the tension in the rope
• the coefficient of friction
• the total angle of contact

For the friction model we have considered, the 
friction will increase exponentially with the coeffi-
cient of friction and the contact angle. Just like the 
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Figure 3: Amontons’ friction law for a flexible belt. (J. L. 
Meriam)

Figure 4: The capstan equation for belt friction.
sliding contact block, the solution is independent of
the contact area, and thus independent of the radiu
bend and the size of the rope. 

Of course the friction on a rope can very greatly
depending on the rope conditions. If the rope is mud
or wet, then the friction will be reduced. If the rope i
old or the outer sheath is worn, then the friction may
increase. For the examples shown here, we will 
assume that the rope is uniform and that the friction
constant over the length of the rope. The real world
will be different, never the less, we will still be able t
gain understanding of the real world by studying som
“ideal” friction cases. 

The plot in Figure 5 illustrates the dramatic 
increase of an exponential function. For this graph, t
x axis represents the coefficient of friction times the
contact angle. The Y axis gives the ratio of the tensi
force T�/T�. Note that for a contact angle of zero or a
friction coefficient of zero, the ratio is 1.0. That’s 
expected. As the product of the coefficient of friction
and the contact angle increase, the function increas
slowly at first. Then, as with any exponential function
the value grows rapidly. 

For the capstan equation, the contact angle mus
be in radians. Recall that 360 degrees or one revolu
tion is equal to 2 π radians. 

Capstan Equation applied to breaking 
devices

In this section I apply the capstan to some of the
common breaking devices used in rope rescue. For
comparing these different devices, I assumed the sa
coefficient of friction for each device. I assumed (did
not measure) the coefficient of friction to be 0.25. Th
coefficient of friction for rope on aluminum can vary
according to the rope type and condition. Mud, wate

Figure 5: Example of exponential function of contact 
behavior.
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ice and oil can all affect the coefficient of friction. I 
used µ = 0.25 as an average number for comparison. 

The tube

The break tube is designed for lowering rescue 
loads. The idea for the tube was borrowed from the 
sailor’s capstan. As can be seen in the calculations
shown in Figure 6, the number of wraps will dramat
cally increase the frictional force. 

For one wrap, the estimated ratio of holding forc
to load would be 10-to-1. For two wraps, the angle 
turn increases to 5π or 900 degrees. This will generate
a 50-to-1 load holding capability. The effects of the 
exponential can really be seen when three wraps a
used. For this case, the holding ratio jumps to 250 to

For a 600-pound rescue load, one would expect
use 60 pounds of holding power if only one wrap is 
used. For two wraps, only 12 pounds would be 
required. If the three wraps are used, then only two
three pounds of holding force are required. The nice
thing about the tube is that the large bending radius
makes it easy to feed the rope, which means that th
wraps are very easy to use. 

The Rack

Figure 7 shows different geometries for the brea
rack. As can be seen in this illustration, one advanta
of the rappel rack is the ability to increase the frictio
by changing the geometry. Simply sliding the bars 
changes the contact angle. For the average bar pos
tion (center of figure) I estimated the angle change 
a rack to be 560 degrees or 3.2 π. This change in 
would give an average breaking force of 12-to-1 for

Figure 6: An analysis of the break tube for different fric-
tional geometries.
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coefficient of friction of 0.25. The maximum angle 
change should be about 800 degrees, which gives 
breaking force ratio of 31-to-1. The minimum angle 
change with only 5 bars fully spaced is about 4-to-1
This configuration could be very useful for a particu
larly heavy rope. Note that if only 4 bars are used, th
the breaking force could drop to a dangerously low 
level.

For a 600-pound rescue load, the maximum hol
ing geometry would require a 30 pounds breaking te
sion. For a load of say 30 pounds below a rappeller
the minimum friction geometry would allow a 120-
pound weight to slide down the rope. 

The Figure-eight

The geometry of the figure-eight breaking device
makes it difficult to estimate the contact angle. My 
estimate was 540 to 630 degrees for the configurat
shown in Figure 8. This should give a holding ratio o
10-to-1 to about 15-to-1, which is comparable to the
mid-range contact angles for a rappel rack. For a 60
pound load, a 40- to 60-pound holding force will be 
required. 

For a heavy rope, the holding ratio cannot be 
reduced. For a 30-pound load hanging below the ra
peller, the rappel weight would need to weigh about
450 pounds. The only solution is to “pull” oneself 
down the rope. 

Figure 7: An analysis of break rack friction for different 
frictional geometries.



Which breaking device is best?

The break tube with three wraps has by far the 
greatest ratio of friction to load. The large bends in the 
tube also make it easy to control. Even though a tube 
with three wraps can generate a holding ratio of 250, it 
is still very easy to feed the rope into the tube.

The advantage of the rack is that moving the break 
bars can change the contact angle. For rappels where 
the rope has considerable tension, the ability to adjust 
the friction can be an advantage. 

 Figure-eight descending devices cannot be 
adjusted under tension, tend to twist the rope, and can 
be difficult to control. Based on these calculations, 
one can conclude that the figure-eight does not have a 
large range of frictional adjustment when compared to 
the break rack or the break tube. 

While no conclusions should be based on calcula-
tions alone, these simple idealized examples show the 
effects of the exponential relation between the friction 
contact angle and the minimum/maximum breaking 
power of these devices. 

Rope Edge Friction

Next we turn our attention to the mechanics of 
friction as a rope goes over the edge of a cliff or rock 
face. As you might expect, the angle that a rope turns 
as it goes over the edge can greatly effect the frictional 
force. What is unexpected is that the contact area does 
not affect the frictional forces.

The example shown in Figure 9 is intended to 
illustrate the frictional forces generated as a rope con-

Figure 8: An analysis of the figure-eight breaking device 
for different frictional geometries.
tacts a cliff face. For this example, the coefficient of 
friction was assumed to be 0.4. First a 45-degree 
change in angle was considered. The increased/
decrease in tension due to friction was only 1.36. For a 
more typical 90-degree turn, a 1.87 change in tension 
occurred. The effect of contact angle really stands out 
when for a 135-degree change in angle. This geometry 
results in 2.60 times more tension. While this high 
ratio may be great for lowering, the resulting tension 
for a rescue load of 600 pounds would be almost 1,560 
pounds. Remember that a single prusik will usually 
slip below this load. 

The most common rescue situation that could gen-
erate a greater than 90 degree bend would be a ridge 
that has an anchor located downhill from the top of the 
ridge line. Bottom line: avoid large changes in rope 
angle.

Typical Z-system forces

The next example is intended to illustrate the 
effect high frictional forces can have on a typical hall 
system. The geometry for a typical Z-system raise is 
shown in Figure 10. A 600-pound rescue load was 
used in the computations. The resulting rope tension 
generated by two contact points with 45-degree bends 
was computed assuming a range of coefficients of 
friction. Figure 11 shows the resulting tensions for 
each rope segment plotted relative to each other. 

For a coefficient of friction of , the max-
imum force in the rope as almost 1,500 pounds. This 
high frictional force almost cancels the mechanical 
advantage gained by the 3:1 Z-system. 

Figure 9: An analysis of friction for a rope that goes over 
an edge.

µ 0.45=



If we assume that the edges have been protected, 
then the friction will drop. Assuming that the friction 
coefficient drops to say, 0.25, then the maximum load 
would be less than 900 pounds, which is still high, but 
nowhere near the 1,500-pound load. The required haul 
force would still be 300 pounds, which results in only 
a 2:1 haul system instead of the ideal 3:1. (I did not 
account for the loss in the pulleys)

The example shown in Figure 10 also illustrates 
that the frictional force depends only on the total 
change in angle.

T� = T� eµβ�� = T��eµβ���eµβ�� (12)

T� = T��eµ(β��+ β���) (13)

Rope Stretch and Bounce due to Friction

Rope stretch can interact with friction in strange 
and sometimes dangerous ways. In this section the 
forces and strain energy stored in a rope will be com-
puted and used to predict the amount of bounce in a 
rope system.

Figure 10: Rope tensile loads for a typical haul system.

Figure 11: The force in rope segments T1 though T4 for the 
geometry shown in Figure 10.
Rope stretch

A rope can be viewed as a spring. As they are 
loaded, they stretch. The amount of stretch depends on 
what is called the spring rate or stiffness. Rope stretch 
is a function of the rope size and construction. In gen-
eral, a larger diameter rope will have less stretch under 
a given load than a smaller diameter rope. Figure 12 
shows a plot of rope stretch for different ropes. From 
this plot, we see that static ropes all fail at about the 
same percent stretch. The higher loads for the larger 
diameters are the results of more nylon fibers. The 
twisted construction of the dynamic rope allows it to 
stretch more before it fails. 

The stiffness of a rope can be used to compute the 
tension based on the change in length

T = K*d (14)

The stiffness depends on the length of rope and the 
rope modulus. The rope modulus is the slope of the 
load deflection curve for a unit length of rope. The 
stiffness is defined as 

K = M/L. (15)

A long rope will not be as stiff as a short rope. PMI 11 
mm static has a modulus of about 19555 lbs. As an 
example, a 200 ft rope would have a stiffness of 

K = 19555lbs /200 ft       = 97.7 lbs/ft (16)

A 200 ft rope supporting 1000 lbs would stretch:

T = K*d (17)

 or 

d = T/K (18)

 to give E = 1000/97.7 = 10.2 ft.
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The strain energy in a rope is energy that is stored 
as the rope is stretched. A good analogy is the rubber 
band on a sling-shot. As the rubber is pulled back, the 
stretching stores elastic energy that is released when 
the sling shot is released. For the sling shot, the strain 
energy is converted to kinetic energy and results in the 
projectile being ‘shot’. 

The strain energy is the energy that is stored as
rope is stretched. The energy is the product of the 
stretching force times the distance that the rope elo
gates. 

(19)

Substituting equation 14 and 15 in to 19 gives

 or (20)

(21)

Equation 21 allows the strain energy to be calcu
lated once the load and rope type is known. From 
these formula, we see that the longer the rope, the 
more strain energy stored for a given tension. A stiff
rope will have a higher modulus and will not store a
much strain energy. (You do not see very many slin

Figure 12: Tensile load for different ropes as a function of 
rope stretch.(William Strorage and John Ganter)
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shots made of steel.) The amount of strain energy 
depends on the square of the tension.

Recall from figure 1 that the static coefficient of 
friction (non-sliding) is higher than the dynamic coe
ficient of friction (sliding). When the sliding starts, the
litter will jerk upwards, even if the haul team is pull-
ing smoothly

When the static slipping force is exceeded, the 
energy is released and the strain energy is exchang
for kinetic energy. This results in a rescue load bein
sling-shot upwards. The change in strain energy ca
be computed by solving for the tension in the ropes
before and after the slip.

(22)

where  and  are the rope tensions before and 

after slip. If we assume that the change in strain 
energy is converted in potential energy (bounce) the
the height of bounce is given by

 (23)

where W is the weigh and h is the change in height.

Figure 12 shows a typical three-point contact 
problem for a lip. Shown in Table 1 is an Excel sprea
sheet that can be used to compute the tension in th
rope, as well as the bounce that results when the ro
slips. 
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Figure 13: An analysis of stain energy, friction and 
bounce 
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Different lengths, angles, and coefficients can be 
entered, and the table will re-compute the forces and 
the bounce. 

The change in strain energy before and after the 
slip is assumed to be equal to the change in the poten-
tial energy. The bounce will be roughly twice the 
height of the change in potential energy predicted. 

Table 1: Tension and slip for system.

When the haul system is tensioned, the rope will 
slide at the top two points. However, the lowest point 
will not slip until the friction is exceeded. The strain 
will build up, and energy will be stored in the rope. 
When the tension in the rope exceeds the slip tension, 
the rescue load will slip. This motion reduces the coef-
ficient of friction and allows the rope to slide past the 
friction points until the tension is reduced. This sud-
den slip will occur even if the haul rate is very slow.

This stick/slip type motion is similar to the 
dynamic release of energy during an earthquake. The 
rope stores its energy until the slip friction is exceeded 
and allows it to release. For 600-foot haul systems, a 
bounce of over 6 feet is not uncommon. 

Summary

Friction force in a rope depends primarily on three 
things:
• The load on the rope
• The coefficient of friction
• The angle that the rope turns through

The angle and coefficient of friction can cause 
an exponential change in rope tension!

We have used a simple friction law for a flexible 
belt over a drum and applied it to several different r
cue situations. The exponential change in rope tens
that results from a change in contact angle or coeffi
es-
ion 
-

cient of friction can drastically affect the behavior of
all rescue systems. 

As a first example, we compared the ideal fric-
tional force for lowering devices. The break tube, th
rappel rack, and figure-eight all can work well when
supporting loads in the 100- to 200-pound range, pr
vided that 10 to 20 pounds of breaking force can be
maintained. However, when much higher rescue loa
are involved, we see that the tube has the best ratio
breaking force to rescue load. The adjustable spaci
on the bars of the rack give it a great range of fric-
tional force.

The frictional forces that are generated as a rop
goes over a lip were computed using the capstan fr
tion equation. While it is counter intuitive, the capsta
frictional equation predicts that force going over a 
edge is independent of the edge radius. The validity
these equations still need to be field tested to see if
these ideal friction laws indeed apply to rescue rope

 The exponential change in friction forces with th
angle of bend is quite surprising and can catch the 
most experienced rescuer off guard. 
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